Wednesday, 1 February 2017

Why Hackers prefer Linux over other Operating System.






Today we look at the reason why hackers always prefer Linux over Mac, Windows, and other operating systems. You may have your own reasons for choosing Linux but what do hackers really look forward to while working with Linux.

Reason1: Command Line Interface VS Graphical User Interface:-


Linux was designed around a strong and highly integrated command line interface. Windows and Mac don’t have that. This grants hackers and Linux far greater access and control over their system and awesome customization. This is the reason that most hacking and pentesting tools are built into Linux have greater functionality above and beyond their windows counterparts. In contrast, Windows was built around the graphic user interface (GUI). This restrict user interaction to point-and-click navigation (slower) and application/system menu options for configuration.
Windows has a command line structure, such as command prompt  and Power Shell, however, these don’t give hackers/developers the complete functionality and integration compared with Linux.  This hampers their work as hacking is usually going beyond the well-defined command lines. This is the reason that though hacking tools like Metasploit or nmap are ported for Windows, they don’t have capabilities like Linux.
Compared to Windows, Linux is more granular. That means Linux gives users infinite amount of control over the system. In Windows, you only can control what Microsoft allows you to control. In Linux, everything can be controlled by the terminal in the most miniscule to the most macro level. In addition, Linux makes scripting in any of the scripting languages simple and effective.

Reason 2: Linux is lighter and more portable

This is arguably the best reason for choosing Linux over Mac and Windows. Hackers can easily create customized live boot disks and drives from any Linux distribution that they want. The installation is quick and its light on resources. To memory, I can only think of one program that lets you create Windows live disks and it wasn’t nearly as light or as quick to install. Linux is made even lighter as many distros are specifically customised as light-weight distros. You can read about the top lightweight Linux distros here.

Reason 3: Linux is typically more secure

Ask a pro hacker or security researcher which operating system is the most secure of them all, and perhaps 101 out 100 will unflinchingly swear by Linux. Windows is popular because of its reach among average users and popularity amongst programmers because it is more profitable to write a program for Windows. In more recent years, popularity has grown for UNIX based operating systems such as Mac OS, Android, and Linux. As a result, these platforms have become more profitable targets for attackers. Still, Linux is a great deal more secure than Windows and Mac out of the box.

Reason 4: Linux is pretty much universal

Just about everything runs some form of UNIX (Internet of Things, routers, web-servers, etc.). Doesn’t it make sense that you would target those systems from a device running the same platform? After all, the goal is to make things easier on yourself. You don’t want to worry about compatibility problems.

Reason 5: Linux Is Open Source

Unlike Windows or Mac, Linux is open source. What that means for us is that the source code of the operating system is available to us. As such, we can change and manipulate it as we please. If you are trying to make a system operate in ways it was not intended, being able to manipulate the source code is essential.
      
Think of it this way. Could you imagine Microsoft giving us a plug-in/MMC or whatever to manipulate or change the kernel of Windows for hacking? Of course NOT!

Reason 6: Linux Is Transparent

To hack effectively, you must know and understand your operating system and to a large extent, the operating system you are attacking. Linux is totally transparent, meaning we can see and manipulate all its working parts.
Not so with Windows. Actually, the opposite is true. Microsoft engineers work hard to make it impossible for users or hackers to find the inner workings of their operating system. On Windows, you are actually working with what Microsoft has given you rather that what you want. Here Linux differs philosophically from Microsoft. Linux was developed as an operating system to give users more control over it rather than make them do what the developers want.

Summary : Linux vs Windows and Mac

You have to understand that hackers and security researcher are here to make money. Hackers hack platforms that are profitable. Windows has been the preferred choice within enterprise environments and with the average consumer. It’s the preferred choice for developers (apple licensing costs and restrictions), which is why Windows is so compatible. Apple has been too expensive for consumers and Linux is frankly not that user-friendly (buggy, lack of GUI, etc.). You don’t have an average Joe just switching on a Linux PC/laptop and doing what he wants.
However, this is changing. With the arrival of Android smartphones, there has been a paradigm shift in user’s preferences.  As more users switch to Mac/iOS and Android/Linux, attackers will shift to targeting these platforms. With Internet of Things predicted to the next game-changer in tech, Linux will emerge as a formidable challenger to Microsoft’s Windows or Apple’s Mac. As of today, most Internet of Things connected devices are powered by Linux and given the transparency and control available in Linux, it will remain so.
Hacking isn’t for the uninitiated. Hacking is an elite profession among the IT field. As such, it requires an extensive and detailed understanding of IT concepts and technologies. At the most fundamental level, Linux is a requirement for hackers and security researchers.

How To Spot Fake News On Facebook.


The Pope has endorsed Donald Trump for president.A Washington, DC, pizzeria is a front for a child sex abuse ring. George Soros will "bring down'' the US by funding "black hate groups.'' These are just some examples of viral stories circulated on social media recently that are completely untrue. Facebook on Thursday announced some steps it's taking to stop the spread of such "fake news'' on its huge social network.

This includes working with outside fact-checking organizations and drying up financial incentives to what it calls the "worst of the worst'' spammers that traffic in made-up stories. But there are basic things news readers can do themselves to spot fake news. And if you want, you can report them to Facebook, which can flag stories for fact-checkers to evaluate.

Check The Source :-  
                                               Some hoax sites, designed to draw you in for advertising revenue, feature designs that resemble legitimate, well-known websites. Such "spoofing'' can be quite effective _ but there are often telltale signs to indicate their true nature.

For example, you should be vary of articles on sites whose addresses, or URLs, that end in ``com.co,'' writes Melissa Zimdars, a communications professor at Merrimack College whose own list of "fake news'' sites went viral. (She has since taken it down and published a more general guide .) You can also check the website's "about'' page, its list of contacts, and other stories and photos on it. Poke around a little; if things look less-than-official, you're probably on a spoof site.

  
Grammar and emotions :- 
                                                           Random use of ALL CAPS? Lots of exclamation points? Does it make sense when you read it out loud? Can you imagine a TV newscaster reading it out loud? Is there something just off about it? Does it sound very angry, inflammatory, emotional? None of these are good signs.

Poke around for other coverage:-  

                                                                            If a story is real and really big, you will likely (though not always) see some version of it from multiple sources. Is it on sites like ABC News, The Associated Press, the New York Times, or other places you have heard of? Is it featured in your local newspaper, the one printed on actual paper? 
               Let's put it this way: If the pope actually endorsed Trump, you'd see it everywhere.
.
On Facebook:-
                                Facebook users often share articles without reading them. Don't be that person. Instead, click on the link and read the story before hitting the "share'' button. If you believe a story someone shared is fake, you can post a comment, or report it to Facebook for outside fact-checking by clicking on the gray arrow on the upper right corner and selecting "report this post.'' You'll get an option for "It's a fake news story.''


Now You Can DELETE You Sent WhatsApp Message.


We have all been there. That horrendously awkward moment when you realise your hastily-typed WhatsApp message has been sent to the wrong person, includes a shameful spelling error or ends with an inappropriate kiss at the end, each with potentially friendship/relationship-ending consequences.

Well fear not, as WhatsApp seems set to put an end to the horror, that is as long as you act fast enough to stop that dastardly double-tick turning to a catastrophic shade of blue.

The oft-requested feature is reportedly in beta testing according to Metro - backing up claims made in tweets from WhatsApp changelog-tracker @WABetaInfo in December 2016. It joins the recently revealed 'Live Location' contact-tracking as potential features that could be added in a future app update on iOS and Android.

Judging by the screenshots (embedded below), the feature would include 'revoke' and 'edit' options to either completely remove or alter a sent text message, respectively. It also seems, however, that deleting a message will alert the recipient by replacing the text with "sender revoked the message". Try explaining your way out of that.


Deleting a WhatsApp message :- 
     Although WhatsApp messages can currently be deleted, as per instructions from WhatsApp FAQ page, it is worth noting they only delete from your account. Anything sent in error will not be erased from the chats of the contact/group you sent it to.

As previously mentioned, the window of opportunity for self-preservation appears to stop at the point a message is read by the receiver (indicated in WhatsApp by the 'received' double-tick turning bright blue), and there is a trick to read messages without the sender knowing you received it.


 The ability to erase unread message would be the biggest change to WhatsApp's functionality since the addition of video calling in late 2016. When exactly the changes will be rolled out is another matter entirely, however. Here's hoping the highly-desired, face-saving feature will see the light of day sooner rather than later.

The Facebook-owned app could also be taking a page out of Snapchat's book, with screenshots showing an update to the largely unused 'Status' text where WhatsApp-ers can add captions and pictures that disappear a day later in a way similar to the photo-sharing app's 'Stories' feature.

Wednesday, 25 January 2017

An AI Algorithm Taught By Humans Learns Beyond Its Training



"Hey Siri, how's my hair?" Your smartphone may soon be able to give you an honest answer, thanks to a new machine learning algorithm designed by U of T Engineering researchers Parham Aarabi and Wenzhi Guo.

The team designed an algorithm that learns directly from human instructions, rather than an existing set of examples, and outperformed conventional methods of training neural networks by 160 per cent. But more surprisingly, their algorithm also outperformed its own training by nine per cent—it learned to recognize hair in pictures with greater reliability than that enabled by the training, marking a significant leap forward for artificial intelligence.

Aarabi and Guo trained their algorithm to identify people's hair in photographs—a much more challenging task for computers than it is for humans.

"Our algorithm learned to correctly classify difficult, borderline cases—distinguishing the texture of hair versus the texture of the background," says Aarabi. "What we saw was like a teacher instructing a child, and the child learning beyond what the teacher taught her initially."

Humans "teach" neural networks—computer networks that learn dynamically—by providing a set of labeled data and asking the neural network to make decisions based on the samples it's seen. For example, you could train a neural network to identify sky in a photograph by showing it hundreds of pictures with the sky labeled.

This algorithm is different: it learns directly from human trainers. With this model, called heuristic training, humans provide direct instructions that are used to pre-classify training samples rather than a set of fixed examples. Trainers program the algorithm with guidelines such as "Sky is likely to be varying shades of blue," and "Pixels near the top of the image are more likely to be sky than pixels at the bottom."

Their work is published in the journal IEEE Transactions on Neural Networks and Learning Systems.

This heuristic training approach holds considerable promise for addressing one of the biggest challenges for neural networks: making correct classifications of previously unknown or unlabeled data. This is crucial for applying machine learning to new situations, such as correctly identifying cancerous tissues for medical diagnostics, or classifying all the objects surrounding and approaching a self-driving car.

"Applying heuristic training to hair segmentation is just a start," says Guo. "We're keen to apply our method to other fields and a range of applications, from medicine to transportation.".

Smart Glasses That Automatically Focuses Wherever You Want To See.



The days of wearing bifocals or constantly swapping out reading glasses might soon come to an end.

A team led by University of Utah electrical and computer engineering professor Carlos Mastrangelo and doctoral student Nazmul Hasan has created "smart glasses" with liquid-based lenses that can automatically adjust the focus on what a person is seeing, whether it is far away or close up. Research on the adaptive lenses was published this week in a special edition of the journal, Optics Express. The paper was co-authored by U electrical and computer engineering associate professor Hanseup Kim and graduate researcher Aishwaryadev Banerjee.

"Most people who get reading glasses have to put them on and take them off all the time," says Mastrangelo, who also is a professor for USTAR, the Utah Science Technology and Research economic development initiative. "You don't have to do that anymore. You put these on, and it's always clear."
The human eye has a lens inside that adjusts the focal depth depending on what you look at. But as people age, the lens loses its ability to change focus, which is why many people ultimately require reading glasses or bifocals to see objects up close and regular eyeglasses to see far away, also known as farsightedness and nearsightedness, respectively.

So Mastrangelo and Hasan have created eyeglass lenses made of glycerin, a thick colorless liquid enclosed by flexible rubber-like membranes in the front and back. The rear membrane in each lens is connected to a series of three mechanical actuators that push the membrane back and forth like a transparent piston, changing the curvature of the liquid lens and therefore the focal length between the lens and the eye.

"The focal length of the glasses depends on the shape of the lens, so to change the optical power we actually have to change the membrane shape," Mastrangelo says.

The lenses are placed in special eyeglass frames also invented by Mastrangelo, Hasan and other members of the research group with electronics and a battery to control and power the actuators. In the bridge of the glasses is a distance meter that measures the distance from the glasses to an object via pulses of infrared light. When the wearer looks at an object, the meter instantly measures the distance and tells the actuators how to curve the lenses. If the user then sees another object that's closer, the distance meter readjusts and tells the actuators to reshape the lens for farsightedness. Hasan says the lenses can change focus from one object to another in 14 milliseconds. A rechargeable battery in the frames could last more than 24 hours per charge, Mastrangelo says.



Before putting them on for the first time, all users have to do is input their eyeglasses prescription into an accompanying smartphone app, which then calibrates the lenses automatically via a Bluetooth connection. Users only needs to do that once except for when their prescription changes over time, and theoretically, eyeglass wearers will never have to buy another pair again since these glasses would constantly adjust to their eyesight.

Currently, the team has constructed a bulky working prototype that they put on display at last month's Consumer Electronics Show in Las Vegas, but expect to constantly improve the design to make them smaller and lighter. Mastrangelo said a lighter, more attractive pair could hit the marketplace in as early as three years and that a startup company, Sharpeyes LLC, has been created to commercialize the glasses.

Monday, 23 January 2017

Crack Your Android Device Pattern within Five Attempts.

The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp
The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp
     The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.

Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.

In order to access a device's functions and content, users must first draw a pattern on an on-screen grid of dots. If this matches the pattern set by the owner then the device can be used. However, users only have five attempts to get the pattern right before the device becomes locked.

New research from Lancaster University, Northwest University in China, and the University of Bath, which benefitted from funding from the Engineering and Physical Sciences Research Council (EPSRC), shows for the first time that attackers can crack Pattern Lock reliably within five attempts by using video and computer vision algorithm software.

By covertly videoing the owner drawing their Pattern Lock shape to unlock their device, while enjoying a coffee in a busy café for example, the attacker, who is pretending to play with their phone, can then use software to quickly track the owner's fingertip movements relative to the position of the device. Within seconds the algorithm produces a small number of candidate patterns to access the Android phone or tablet.

The attack works even without the video footage being able to see any of the on-screen content, and regardless of the size of the screen. Results are accurate on video recorded on a mobile phone from up to two and a half metres away – and so attacks are more covert than shoulder-surfing. It also works reliably with footage recorded on a digital SLR camera at distances up to nine metres away.

Researchers evaluated the attack using 120 unique patterns collected from independent users. They were able to crack more than 95 per cent of patterns within five attempts.

Complex patterns, which use more lines between dots, are used by many to make it harder for observers to replicate. However, researchers found that these complex shapes were easier to crack because they help the fingertip algorithm to narrow down the possible options.

During tests, researchers were able to crack all but one of the patterns categorised as complex within the first attempt. They were able to successfully crack 87.5 per cent of median complex patterns and 60 per cent of simple patterns with the first attempt.

Researchers believe this form of attack would enable thieves to access phones after pinching them to obtain sensitive information, or would allow malware to be quickly installed on devices while their owners were distracted.

In addition, given people often use the same pattern across multiple devices a pattern obtained from one device could be used to access a second device.

Dr Zheng Wang, principle investigator and co-author of the paper, and Lecturer at Lancaster University, said: "Pattern Lock is a very popular protection method for Android Devices. As well as for locking their devices, people tend to use complex patterns for important financial transactions such as online banking and shopping because they believe it is a secure system. However, our findings suggest that using Pattern Lock to protect sensitive information could actually be very risky."

"Contrary to many people's perception that more complex patterns give better protection, this attack actually makes more complex patterns easier to crack and so they may be more secure using shorter, simpler patterns," Guixin Ye, the leading student author from Northwest University, added.

The researchers have proposed suggested countermeasures to prevent this attack. They include device users fully covering fingers when drawing the pattern; or pattern lock designers mixing pattern locking with other activities such as entering a sentence using Swype-like methods; in addition having the screen colour and brightness change dynamically could confuse the recording camera.                                                                                                                              





The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.
In order to access a device's functions and content, users must first draw a pattern on an on-screen grid of dots. If this matches the pattern set by the owner then the device can be used. However, users only have five attempts to get the pattern right before the device becomes locked.
New research from Lancaster University, Northwest University in China, and the University of Bath, which benefitted from funding from the Engineering and Physical Sciences Research Council (EPSRC), shows for the first time that attackers can crack Pattern Lock reliably within five attempts by using video and computer vision algorithm software.
By covertly videoing the owner drawing their Pattern Lock shape to unlock their device, while enjoying a coffee in a busy café for example, the attacker, who is pretending to play with their phone, can then use software to quickly track the owner's fingertip movements relative to the position of the device. Within seconds the algorithm produces a small number of candidate patterns to access the Android phone or tablet.
The attack works even without the video footage being able to see any of the on-screen content, and regardless of the size of the screen. Results are accurate on video recorded on a mobile phone from up to two and a half metres away – and so attacks are more covert than shoulder-surfing. It also works reliably with footage recorded on a digital SLR camera at distances up to nine metres away.
Researchers evaluated the attack using 120 unique patterns collected from independent users. They were able to crack more than 95 per cent of patterns within five attempts.
Complex patterns, which use more lines between dots, are used by many to make it harder for observers to replicate. However, researchers found that these complex shapes were easier to crack because they help the fingertip algorithm to narrow down the possible options.
During tests, researchers were able to crack all but one of the patterns categorised as complex within the first attempt. They were able to successfully crack 87.5 per cent of median complex patterns and 60 per cent of simple patterns with the first attempt.
Researchers believe this form of attack would enable thieves to access phones after pinching them to obtain , or would allow malware to be quickly installed on devices while their owners were distracted.
In addition, given people often use the same pattern across multiple devices a pattern obtained from one device could be used to access a second device.
Dr Zheng Wang, principle investigator and co-author of the paper, and Lecturer at Lancaster University, said: "Pattern Lock is a very popular protection method for Android Devices. As well as for locking their devices, people tend to use complex patterns for important financial transactions such as online banking and shopping because they believe it is a secure system. However, our findings suggest that using Pattern Lock to protect sensitive information could actually be very risky."
"Contrary to many people's perception that more complex patterns give better protection, this attack actually makes more easier to crack and so they may be more secure using shorter, simpler patterns," Guixin Ye, the leading student author from Northwest University, added.
The researchers have proposed suggested countermeasures to prevent this attack. They include device users fully covering fingers when drawing the pattern; or pattern lock designers mixing pattern locking with other activities such as entering a sentence using Swype-like methods; in addition having the screen colour and brightness change dynamically could confuse the recording camera.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp
The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.
In order to access a device's functions and content, users must first draw a pattern on an on-screen grid of dots. If this matches the pattern set by the owner then the device can be used. However, users only have five attempts to get the pattern right before the device becomes locked.
New research from Lancaster University, Northwest University in China, and the University of Bath, which benefitted from funding from the Engineering and Physical Sciences Research Council (EPSRC), shows for the first time that attackers can crack Pattern Lock reliably within five attempts by using video and computer vision algorithm software.
By covertly videoing the owner drawing their Pattern Lock shape to unlock their device, while enjoying a coffee in a busy café for example, the attacker, who is pretending to play with their phone, can then use software to quickly track the owner's fingertip movements relative to the position of the device. Within seconds the algorithm produces a small number of candidate patterns to access the Android phone or tablet.
The attack works even without the video footage being able to see any of the on-screen content, and regardless of the size of the screen. Results are accurate on video recorded on a mobile phone from up to two and a half metres away – and so attacks are more covert than shoulder-surfing. It also works reliably with footage recorded on a digital SLR camera at distances up to nine metres away.
Researchers evaluated the attack using 120 unique patterns collected from independent users. They were able to crack more than 95 per cent of patterns within five attempts.
Complex patterns, which use more lines between dots, are used by many to make it harder for observers to replicate. However, researchers found that these complex shapes were easier to crack because they help the fingertip algorithm to narrow down the possible options.
During tests, researchers were able to crack all but one of the patterns categorised as complex within the first attempt. They were able to successfully crack 87.5 per cent of median complex patterns and 60 per cent of simple patterns with the first attempt.
Researchers believe this form of attack would enable thieves to access phones after pinching them to obtain , or would allow malware to be quickly installed on devices while their owners were distracted.
In addition, given people often use the same pattern across multiple devices a pattern obtained from one device could be used to access a second device.
Dr Zheng Wang, principle investigator and co-author of the paper, and Lecturer at Lancaster University, said: "Pattern Lock is a very popular protection method for Android Devices. As well as for locking their devices, people tend to use complex patterns for important financial transactions such as online banking and shopping because they believe it is a secure system. However, our findings suggest that using Pattern Lock to protect sensitive information could actually be very risky."
"Contrary to many people's perception that more complex patterns give better protection, this attack actually makes more easier to crack and so they may be more secure using shorter, simpler patterns," Guixin Ye, the leading student author from Northwest University, added.
The researchers have proposed suggested countermeasures to prevent this attack. They include device users fully covering fingers when drawing the pattern; or pattern lock designers mixing pattern locking with other activities such as entering a sentence using Swype-like methods; in addition having the screen colour and brightness change dynamically could confuse the recording camera.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp
The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.
In order to access a device's functions and content, users must first draw a pattern on an on-screen grid of dots. If this matches the pattern set by the owner then the device can be used. However, users only have five attempts to get the pattern right before the device becomes locked.
New research from Lancaster University, Northwest University in China, and the University of Bath, which benefitted from funding from the Engineering and Physical Sciences Research Council (EPSRC), shows for the first time that attackers can crack Pattern Lock reliably within five attempts by using video and computer vision algorithm software.
By covertly videoing the owner drawing their Pattern Lock shape to unlock their device, while enjoying a coffee in a busy café for example, the attacker, who is pretending to play with their phone, can then use software to quickly track the owner's fingertip movements relative to the position of the device. Within seconds the algorithm produces a small number of candidate patterns to access the Android phone or tablet.
The attack works even without the video footage being able to see any of the on-screen content, and regardless of the size of the screen. Results are accurate on video recorded on a mobile phone from up to two and a half metres away – and so attacks are more covert than shoulder-surfing. It also works reliably with footage recorded on a digital SLR camera at distances up to nine metres away.
Researchers evaluated the attack using 120 unique patterns collected from independent users. They were able to crack more than 95 per cent of patterns within five attempts.
Complex patterns, which use more lines between dots, are used by many to make it harder for observers to replicate. However, researchers found that these complex shapes were easier to crack because they help the fingertip algorithm to narrow down the possible options.
During tests, researchers were able to crack all but one of the patterns categorised as complex within the first attempt. They were able to successfully crack 87.5 per cent of median complex patterns and 60 per cent of simple patterns with the first attempt.
Researchers believe this form of attack would enable thieves to access phones after pinching them to obtain , or would allow malware to be quickly installed on devices while their owners were distracted.
In addition, given people often use the same pattern across multiple devices a pattern obtained from one device could be used to access a second device.
Dr Zheng Wang, principle investigator and co-author of the paper, and Lecturer at Lancaster University, said: "Pattern Lock is a very popular protection method for Android Devices. As well as for locking their devices, people tend to use complex patterns for important financial transactions such as online banking and shopping because they believe it is a secure system. However, our findings suggest that using Pattern Lock to protect sensitive information could actually be very risky."
"Contrary to many people's perception that more complex patterns give better protection, this attack actually makes more easier to crack and so they may be more secure using shorter, simpler patterns," Guixin Ye, the leading student author from Northwest University, added.
The researchers have proposed suggested countermeasures to prevent this attack. They include device users fully covering fingers when drawing the pattern; or pattern lock designers mixing pattern locking with other activities such as entering a sentence using Swype-like methods; in addition having the screen colour and brightness change dynamically could confuse the recording camera.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp
The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.
In order to access a device's functions and content, users must first draw a pattern on an on-screen grid of dots. If this matches the pattern set by the owner then the device can be used. However, users only have five attempts to get the pattern right before the device becomes locked.
New research from Lancaster University, Northwest University in China, and the University of Bath, which benefitted from funding from the Engineering and Physical Sciences Research Council (EPSRC), shows for the first time that attackers can crack Pattern Lock reliably within five attempts by using video and computer vision algorithm software.
By covertly videoing the owner drawing their Pattern Lock shape to unlock their device, while enjoying a coffee in a busy café for example, the attacker, who is pretending to play with their phone, can then use software to quickly track the owner's fingertip movements relative to the position of the device. Within seconds the algorithm produces a small number of candidate patterns to access the Android phone or tablet.
The attack works even without the video footage being able to see any of the on-screen content, and regardless of the size of the screen. Results are accurate on video recorded on a mobile phone from up to two and a half metres away – and so attacks are more covert than shoulder-surfing. It also works reliably with footage recorded on a digital SLR camera at distances up to nine metres away.
Researchers evaluated the attack using 120 unique patterns collected from independent users. They were able to crack more than 95 per cent of patterns within five attempts.
Complex patterns, which use more lines between dots, are used by many to make it harder for observers to replicate. However, researchers found that these complex shapes were easier to crack because they help the fingertip algorithm to narrow down the possible options.
During tests, researchers were able to crack all but one of the patterns categorised as complex within the first attempt. They were able to successfully crack 87.5 per cent of median complex patterns and 60 per cent of simple patterns with the first attempt.
Researchers believe this form of attack would enable thieves to access phones after pinching them to obtain , or would allow malware to be quickly installed on devices while their owners were distracted.
In addition, given people often use the same pattern across multiple devices a pattern obtained from one device could be used to access a second device.
Dr Zheng Wang, principle investigator and co-author of the paper, and Lecturer at Lancaster University, said: "Pattern Lock is a very popular protection method for Android Devices. As well as for locking their devices, people tend to use complex patterns for important financial transactions such as online banking and shopping because they believe it is a secure system. However, our findings suggest that using Pattern Lock to protect sensitive information could actually be very risky."
"Contrary to many people's perception that more complex patterns give better protection, this attack actually makes more easier to crack and so they may be more secure using shorter, simpler patterns," Guixin Ye, the leading student author from Northwest University, added.
The researchers have proposed suggested countermeasures to prevent this attack. They include device users fully covering fingers when drawing the pattern; or pattern lock designers mixing pattern locking with other activities such as entering a sentence using Swype-like methods; in addition having the screen colour and brightness change dynamically could confuse the recording camera.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp
The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.
In order to access a device's functions and content, users must first draw a pattern on an on-screen grid of dots. If this matches the pattern set by the owner then the device can be used. However, users only have five attempts to get the pattern right before the device becomes locked.
New research from Lancaster University, Northwest University in China, and the University of Bath, which benefitted from funding from the Engineering and Physical Sciences Research Council (EPSRC), shows for the first time that attackers can crack Pattern Lock reliably within five attempts by using video and computer vision algorithm software.
By covertly videoing the owner drawing their Pattern Lock shape to unlock their device, while enjoying a coffee in a busy café for example, the attacker, who is pretending to play with their phone, can then use software to quickly track the owner's fingertip movements relative to the position of the device. Within seconds the algorithm produces a small number of candidate patterns to access the Android phone or tablet.
The attack works even without the video footage being able to see any of the on-screen content, and regardless of the size of the screen. Results are accurate on video recorded on a mobile phone from up to two and a half metres away – and so attacks are more covert than shoulder-surfing. It also works reliably with footage recorded on a digital SLR camera at distances up to nine metres away.
Researchers evaluated the attack using 120 unique patterns collected from independent users. They were able to crack more than 95 per cent of patterns within five attempts.
Complex patterns, which use more lines between dots, are used by many to make it harder for observers to replicate. However, researchers found that these complex shapes were easier to crack because they help the fingertip algorithm to narrow down the possible options.
During tests, researchers were able to crack all but one of the patterns categorised as complex within the first attempt. They were able to successfully crack 87.5 per cent of median complex patterns and 60 per cent of simple patterns with the first attempt.
Researchers believe this form of attack would enable thieves to access phones after pinching them to obtain , or would allow malware to be quickly installed on devices while their owners were distracted.
In addition, given people often use the same pattern across multiple devices a pattern obtained from one device could be used to access a second device.
Dr Zheng Wang, principle investigator and co-author of the paper, and Lecturer at Lancaster University, said: "Pattern Lock is a very popular protection method for Android Devices. As well as for locking their devices, people tend to use complex patterns for important financial transactions such as online banking and shopping because they believe it is a secure system. However, our findings suggest that using Pattern Lock to protect sensitive information could actually be very risky."
"Contrary to many people's perception that more complex patterns give better protection, this attack actually makes more easier to crack and so they may be more secure using shorter, simpler patterns," Guixin Ye, the leading student author from Northwest University, added.
The researchers have proposed suggested countermeasures to prevent this attack. They include device users fully covering fingers when drawing the pattern; or pattern lock designers mixing pattern locking with other activities such as entering a sentence using Swype-like methods; in addition having the screen colour and brightness change dynamically could confuse the recording camera.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp
The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.
In order to access a device's functions and content, users must first draw a pattern on an on-screen grid of dots. If this matches the pattern set by the owner then the device can be used. However, users only have five attempts to get the pattern right before the device becomes locked.
New research from Lancaster University, Northwest University in China, and the University of Bath, which benefitted from funding from the Engineering and Physical Sciences Research Council (EPSRC), shows for the first time that attackers can crack Pattern Lock reliably within five attempts by using video and computer vision algorithm software.
By covertly videoing the owner drawing their Pattern Lock shape to unlock their device, while enjoying a coffee in a busy café for example, the attacker, who is pretending to play with their phone, can then use software to quickly track the owner's fingertip movements relative to the position of the device. Within seconds the algorithm produces a small number of candidate patterns to access the Android phone or tablet.
The attack works even without the video footage being able to see any of the on-screen content, and regardless of the size of the screen. Results are accurate on video recorded on a mobile phone from up to two and a half metres away – and so attacks are more covert than shoulder-surfing. It also works reliably with footage recorded on a digital SLR camera at distances up to nine metres away.
Researchers evaluated the attack using 120 unique patterns collected from independent users. They were able to crack more than 95 per cent of patterns within five attempts.
Complex patterns, which use more lines between dots, are used by many to make it harder for observers to replicate. However, researchers found that these complex shapes were easier to crack because they help the fingertip algorithm to narrow down the possible options.
During tests, researchers were able to crack all but one of the patterns categorised as complex within the first attempt. They were able to successfully crack 87.5 per cent of median complex patterns and 60 per cent of simple patterns with the first attempt.
Researchers believe this form of attack would enable thieves to access phones after pinching them to obtain , or would allow malware to be quickly installed on devices while their owners were distracted.
In addition, given people often use the same pattern across multiple devices a pattern obtained from one device could be used to access a second device.
Dr Zheng Wang, principle investigator and co-author of the paper, and Lecturer at Lancaster University, said: "Pattern Lock is a very popular protection method for Android Devices. As well as for locking their devices, people tend to use complex patterns for important financial transactions such as online banking and shopping because they believe it is a secure system. However, our findings suggest that using Pattern Lock to protect sensitive information could actually be very risky."
"Contrary to many people's perception that more complex patterns give better protection, this attack actually makes more easier to crack and so they may be more secure using shorter, simpler patterns," Guixin Ye, the leading student author from Northwest University, added.
The researchers have proposed suggested countermeasures to prevent this attack. They include device users fully covering fingers when drawing the pattern; or pattern lock designers mixing pattern locking with other activities such as entering a sentence using Swype-like methods; in addition having the screen colour and brightness change dynamically could confuse the recording camera.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp
The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.
In order to access a device's functions and content, users must first draw a pattern on an on-screen grid of dots. If this matches the pattern set by the owner then the device can be used. However, users only have five attempts to get the pattern right before the device becomes locked.
New research from Lancaster University, Northwest University in China, and the University of Bath, which benefitted from funding from the Engineering and Physical Sciences Research Council (EPSRC), shows for the first time that attackers can crack Pattern Lock reliably within five attempts by using video and computer vision algorithm software.
By covertly videoing the owner drawing their Pattern Lock shape to unlock their device, while enjoying a coffee in a busy café for example, the attacker, who is pretending to play with their phone, can then use software to quickly track the owner's fingertip movements relative to the position of the device. Within seconds the algorithm produces a small number of candidate patterns to access the Android phone or tablet.
The attack works even without the video footage being able to see any of the on-screen content, and regardless of the size of the screen. Results are accurate on video recorded on a mobile phone from up to two and a half metres away – and so attacks are more covert than shoulder-surfing. It also works reliably with footage recorded on a digital SLR camera at distances up to nine metres away.
Researchers evaluated the attack using 120 unique patterns collected from independent users. They were able to crack more than 95 per cent of patterns within five attempts.
Complex patterns, which use more lines between dots, are used by many to make it harder for observers to replicate. However, researchers found that these complex shapes were easier to crack because they help the fingertip algorithm to narrow down the possible options.
During tests, researchers were able to crack all but one of the patterns categorised as complex within the first attempt. They were able to successfully crack 87.5 per cent of median complex patterns and 60 per cent of simple patterns with the first attempt.
Researchers believe this form of attack would enable thieves to access phones after pinching them to obtain , or would allow malware to be quickly installed on devices while their owners were distracted.
In addition, given people often use the same pattern across multiple devices a pattern obtained from one device could be used to access a second device.
Dr Zheng Wang, principle investigator and co-author of the paper, and Lecturer at Lancaster University, said: "Pattern Lock is a very popular protection method for Android Devices. As well as for locking their devices, people tend to use complex patterns for important financial transactions such as online banking and shopping because they believe it is a secure system. However, our findings suggest that using Pattern Lock to protect sensitive information could actually be very risky."
"Contrary to many people's perception that more complex patterns give better protection, this attack actually makes more easier to crack and so they may be more secure using shorter, simpler patterns," Guixin Ye, the leading student author from Northwest University, added.
The researchers have proposed suggested countermeasures to prevent this attack. They include device users fully covering fingers when drawing the pattern; or pattern lock designers mixing pattern locking with other activities such as entering a sentence using Swype-like methods; in addition having the screen colour and brightness change dynamically could confuse the recording camera.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp
The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.
In order to access a device's functions and content, users must first draw a pattern on an on-screen grid of dots. If this matches the pattern set by the owner then the device can be used. However, users only have five attempts to get the pattern right before the device becomes locked.
New research from Lancaster University, Northwest University in China, and the University of Bath, which benefitted from funding from the Engineering and Physical Sciences Research Council (EPSRC), shows for the first time that attackers can crack Pattern Lock reliably within five attempts by using video and computer vision algorithm software.
By covertly videoing the owner drawing their Pattern Lock shape to unlock their device, while enjoying a coffee in a busy café for example, the attacker, who is pretending to play with their phone, can then use software to quickly track the owner's fingertip movements relative to the position of the device. Within seconds the algorithm produces a small number of candidate patterns to access the Android phone or tablet.
The attack works even without the video footage being able to see any of the on-screen content, and regardless of the size of the screen. Results are accurate on video recorded on a mobile phone from up to two and a half metres away – and so attacks are more covert than shoulder-surfing. It also works reliably with footage recorded on a digital SLR camera at distances up to nine metres away.
Researchers evaluated the attack using 120 unique patterns collected from independent users. They were able to crack more than 95 per cent of patterns within five attempts.
Complex patterns, which use more lines between dots, are used by many to make it harder for observers to replicate. However, researchers found that these complex shapes were easier to crack because they help the fingertip algorithm to narrow down the possible options.
During tests, researchers were able to crack all but one of the patterns categorised as complex within the first attempt. They were able to successfully crack 87.5 per cent of median complex patterns and 60 per cent of simple patterns with the first attempt.
Researchers believe this form of attack would enable thieves to access phones after pinching them to obtain , or would allow malware to be quickly installed on devices while their owners were distracted.
In addition, given people often use the same pattern across multiple devices a pattern obtained from one device could be used to access a second device.
Dr Zheng Wang, principle investigator and co-author of the paper, and Lecturer at Lancaster University, said: "Pattern Lock is a very popular protection method for Android Devices. As well as for locking their devices, people tend to use complex patterns for important financial transactions such as online banking and shopping because they believe it is a secure system. However, our findings suggest that using Pattern Lock to protect sensitive information could actually be very risky."
"Contrary to many people's perception that more complex patterns give better protection, this attack actually makes more easier to crack and so they may be more secure using shorter, simpler patterns," Guixin Ye, the leading student author from Northwest University, added.
The researchers have proposed suggested countermeasures to prevent this attack. They include device users fully covering fingers when drawing the pattern; or pattern lock designers mixing pattern locking with other activities such as entering a sentence using Swype-like methods; in addition having the screen colour and brightness change dynamically could confuse the recording camera.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp
The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.
In order to access a device's functions and content, users must first draw a pattern on an on-screen grid of dots. If this matches the pattern set by the owner then the device can be used. However, users only have five attempts to get the pattern right before the device becomes locked.
New research from Lancaster University, Northwest University in China, and the University of Bath, which benefitted from funding from the Engineering and Physical Sciences Research Council (EPSRC), shows for the first time that attackers can crack Pattern Lock reliably within five attempts by using video and computer vision algorithm software.
By covertly videoing the owner drawing their Pattern Lock shape to unlock their device, while enjoying a coffee in a busy café for example, the attacker, who is pretending to play with their phone, can then use software to quickly track the owner's fingertip movements relative to the position of the device. Within seconds the algorithm produces a small number of candidate patterns to access the Android phone or tablet.
The attack works even without the video footage being able to see any of the on-screen content, and regardless of the size of the screen. Results are accurate on video recorded on a mobile phone from up to two and a half metres away – and so attacks are more covert than shoulder-surfing. It also works reliably with footage recorded on a digital SLR camera at distances up to nine metres away.
Researchers evaluated the attack using 120 unique patterns collected from independent users. They were able to crack more than 95 per cent of patterns within five attempts.
Complex patterns, which use more lines between dots, are used by many to make it harder for observers to replicate. However, researchers found that these complex shapes were easier to crack because they help the fingertip algorithm to narrow down the possible options.
During tests, researchers were able to crack all but one of the patterns categorised as complex within the first attempt. They were able to successfully crack 87.5 per cent of median complex patterns and 60 per cent of simple patterns with the first attempt.
Researchers believe this form of attack would enable thieves to access phones after pinching them to obtain , or would allow malware to be quickly installed on devices while their owners were distracted.
In addition, given people often use the same pattern across multiple devices a pattern obtained from one device could be used to access a second device.
Dr Zheng Wang, principle investigator and co-author of the paper, and Lecturer at Lancaster University, said: "Pattern Lock is a very popular protection method for Android Devices. As well as for locking their devices, people tend to use complex patterns for important financial transactions such as online banking and shopping because they believe it is a secure system. However, our findings suggest that using Pattern Lock to protect sensitive information could actually be very risky."
"Contrary to many people's perception that more complex patterns give better protection, this attack actually makes more easier to crack and so they may be more secure using shorter, simpler patterns," Guixin Ye, the leading student author from Northwest University, added.
The researchers have proposed suggested countermeasures to prevent this attack. They include device users fully covering fingers when drawing the pattern; or pattern lock designers mixing pattern locking with other activities such as entering a sentence using Swype-like methods; in addition having the screen colour and brightness change dynamically could confuse the recording camera.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp
The popular Pattern Lock system used to secure millions of Android phones can be cracked within just five attempts – and more complicated patterns are the easiest to crack, security experts reveal.
Pattern Lock is a security measure that protects devices, such as mobile phones or tablets, and which is preferred by many to PIN codes or text passwords. It is used by around 40 per cent of Android device owners.
In order to access a device's functions and content, users must first draw a pattern on an on-screen grid of dots. If this matches the pattern set by the owner then the device can be used. However, users only have five attempts to get the pattern right before the device becomes locked.
New research from Lancaster University, Northwest University in China, and the University of Bath, which benefitted from funding from the Engineering and Physical Sciences Research Council (EPSRC), shows for the first time that attackers can crack Pattern Lock reliably within five attempts by using video and computer vision algorithm software.
By covertly videoing the owner drawing their Pattern Lock shape to unlock their device, while enjoying a coffee in a busy café for example, the attacker, who is pretending to play with their phone, can then use software to quickly track the owner's fingertip movements relative to the position of the device. Within seconds the algorithm produces a small number of candidate patterns to access the Android phone or tablet.
The attack works even without the video footage being able to see any of the on-screen content, and regardless of the size of the screen. Results are accurate on video recorded on a mobile phone from up to two and a half metres away – and so attacks are more covert than shoulder-surfing. It also works reliably with footage recorded on a digital SLR camera at distances up to nine metres away.
Researchers evaluated the attack using 120 unique patterns collected from independent users. They were able to crack more than 95 per cent of patterns within five attempts.
Complex patterns, which use more lines between dots, are used by many to make it harder for observers to replicate. However, researchers found that these complex shapes were easier to crack because they help the fingertip algorithm to narrow down the possible options.
During tests, researchers were able to crack all but one of the patterns categorised as complex within the first attempt. They were able to successfully crack 87.5 per cent of median complex patterns and 60 per cent of simple patterns with the first attempt.
Researchers believe this form of attack would enable thieves to access phones after pinching them to obtain , or would allow malware to be quickly installed on devices while their owners were distracted.
In addition, given people often use the same pattern across multiple devices a pattern obtained from one device could be used to access a second device.
Dr Zheng Wang, principle investigator and co-author of the paper, and Lecturer at Lancaster University, said: "Pattern Lock is a very popular protection method for Android Devices. As well as for locking their devices, people tend to use complex patterns for important financial transactions such as online banking and shopping because they believe it is a secure system. However, our findings suggest that using Pattern Lock to protect sensitive information could actually be very risky."
"Contrary to many people's perception that more complex patterns give better protection, this attack actually makes more easier to crack and so they may be more secure using shorter, simpler patterns," Guixin Ye, the leading student author from Northwest University, added.
The researchers have proposed suggested countermeasures to prevent this attack. They include device users fully covering fingers when drawing the pattern; or pattern lock designers mixing pattern locking with other activities such as entering a sentence using Swype-like methods; in addition having the screen colour and brightness change dynamically could confuse the recording camera.


Read more at: https://phys.org/news/2017-01-android-device-pattern.html#jCp

Nova launcher prime [CRACKED]

Nova Launcher Prime v5.0.10 Cracked apk for Android.

The highly customizable, performance driven, home screen replacement
Accept no substitues! Nova Launcher is the original and most polished customizable launcher for modern Android
Features

Ok, Google – Use Google Search’s hotword right from the home screen, just say the words Ok, Google.
Color Theme – Set the highlight accent color for the launcher
Also individual Color controls for labels, folders, unread count badges, drawer tabs and background
Icon Themes – Find thousands of icon themes for Nova Launcher on the Play Store
Subgrid positioning – Much greater control than standard launchers, Nova Launcher allows you to snap icons or widgets half way through the desktop grid cells
Customize App Drawer – Custom tabs, Vertical or Horizontal scrolling, Custom effects
Infinite scroll – Never far from your favorite page, loop through the desktop or drawer continously
Backup/Restore – Sophisticated backup/restore system allowing you to backup your desktop layout and launcher settings
Scrollable Dock – Create multiple docks and scroll between them
Widgets in dock – Place any widget in your dock, such as a 4×1 music player widget
Import Layout – No need to rebuild your desktop from scratch, Nova Launcher can import from most popular launchers. Including the one that came with your phone.
Fast – Nova Launcher is highly optimized to do it’s work quickly and quietly, keeping the animations smooth and letting you use your phone as fast as you can move your fingers.
Unlock the following extras with Nova Launcher Prime

Gestures – Swipe, pinch, double tap and more on the home screen to open your favorite apps
Unread Counts – Never miss a message. Unread count badges for Hangouts, SMS, Gmail and more using the Tesla Unread plugin
Custom Drawer Groups – Create new tabs or folders in the App drawer
Hide Apps – Keep a clean app drawer by hiding never used apps
Icon Swipes – Set custom actions for swiping on app shortcuts or folders
More scroll effects – Such as Wipe, Accordion, and Throw
What’s New?

5.0-beta10 Dec 9, 2016
Quick start to easily change major settings (Nova Settings > Backup > Quick start)
Fix dock background in landscape
Fixes and performance improvements

INSTRUCTIONS:
1. Uninstall previous version of Nova Launcher and Tesla Unread plugin
2. Install Nova Launcher and the Tesla Unread plugin from my package (not from Google Play).
3. Enjoy!

This is patched version, fully unlocked prime functions. No prime key is required.
If your ROM came with Nova Launcher you’ll have to remove it before installing this.

How to install it?

Uninstall previous version of Nova Launcher apk & Tesla Unread Plugin
Install both of the apks given in the archive.
Launch Nova Launcher
Enjoy!



Download apk